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Dynamic force spectroscopy: Optimized data analysis
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The forced rupture of single chemical bonds in biomolecular compounds~e.g., ligand-receptor systems! as
observed in dynamic force spectroscopy experiments is addressed. An optimized method of data analysis is
proposed. This method significantly outperforms the current standard one when applied to data from an
idealized numerical computer simulation of an experiment with realistic parameter values. In particular, the
force-free dissociation rate can be inferred with a considerably smaller statistical uncertainty and without the
systematic overestimation of about 30%, which is shown to be inherent in the standard method.
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Dynamic force spectroscopy is a powerful and versa
method to characterize bond strengths of a variety of biom
lecular compounds@1–5#. Using an atomic force microscop
or some other experimental tool~see Table 1 of Ref.@6#!, a
single chemical bond~e.g., in a ligand-receptor complex! is
exposed to a pulling force that increases linearly in time a
ratem,

f ~ t !5m t, ~1!

until the bond breaks at a quite precisely measurable rup
force. In doing so, the biomolecule is permanently in cont
with a thermal heat bath~usually a surrounding liquid! at a
fixed temperatureT. Upon repeating the experiment with th
same compound and the same pulling ratem one observes
rupture forces that are statistically distributed over a rat
wide range. Furthermore, for different pulling ratesm, one
observes significantly different such statistical distributio
The theoretical challenge is to draw conclusions regard
the chemical bond under study from these experimental d
Milestones in this respect are due to Bell@7# and to Evans
and Ritchie@2#, forming the basis of the current standa
method of data analysis and consisting of the following th
main points.

~i! A rupture event is viewed as thermally activated dec
of a metastable state across a potential barrier governed
reaction kinetics of the form

ṗ~ t !52n„f ~ t !…p~ t !, ~2!

wherep(t) is the probability of bond survival up to timet
and n( f ) is the rate of decay in the presence of a pulli
force f. The only assumption implicit in Eq.~2! is that in-
tramolecular thermal relaxation processes are much fa
than the instantaneous lifetime 1/n(t) of the bond and the
time scale on which the applied forcef (t) notably changes
For the experimentally feasible pulling ratesm in Eq. ~1!,
ranging from 1021 to 105 pN/sec @3#, this condition, and
hence Eq.~2! is very well satisfied in most cases.

~ii ! Under the very same conditions, reaction rate the
@8# predicts an Arrhenius law forn( f ) of the form
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n~ f !5v~ f !exp$2DU~ f !/kBT%, ~3!

where the potential barrier against decayDU( f ) is large
compared to the thermal energykBT and the prefactorv( f )
represents the intramolecular attempt frequency.

~iii ! As long as the energy barrier separating the unbo
and bound states is sufficiently sharp and deep and/or
applied force is sufficiently weak, one can approximate
linearizeDU( f ) and neglect thef dependence ofv( f ), with
the result

n~ f !5n0 exp$a f %, ~4!

where n0ªn(0) is the force-free dissociation rate of th
chemical bond under study. Its determination is clearly
foremost interest in this context. The coefficienta timeskBT
can be identified as the spatial distance between pote
minimum and maximum~projected along the direction of th
pulling force! and is therefore a second quantity of cons
erable interest.

The currently predominant method of estimatingn0 anda
from experimentally observed rupture forces is based on
above described theoretical insight in conjunction with t
following line of reasoning. Taking into account Eqs.~1!, ~2!,
and ~4!, one readily finds@2# that the probability of rupture
as a function of the acting forcef >0 is monotonically de-
creasing if the pulling ratem is smaller than the critical value

m0ªn0 /a. ~5!

In other words, the most probable rupture forcef * (m) is
given by

f * ~m!50 for m<m0 . ~6!

On the other hand, form.m0 the probability of rupture be-
comes a nonmonotonic function of the acting forcef with a
unique maximum at

f * ~m!5
1

a
lnS am

n0
D for m.m0 . ~7!

Hence,n0 and a can be determined by conducting expe
ments with several different pulling ratesm.m0. For each of
them, the most probable rupture forcef * (m) can be esti-
©2003 The American Physical Society03-1
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mated, usually by fitting a Gaussian to the observed distr
tion of rupture forces in the form of a histogram~cf. Fig. 1!.
Then, the resultingf * (m) values are plotted versus ln(m).
Finally, a linear best fit yields an estimate forn0 anda. This
procedure is henceforth referred to asstandard method.

It has several obvious weak points. For instance, for ty
cal values of the rupture parameters~see Table 3 in Ref.@5#!

n051 sec21, a50.1 pN21 ~8!

the critical pulling rate in Eq.~5! is m0510 pN/sec. Hence
out of the experimentally feasible pulling ratesm between
1021 and 105 pN/sec the first 2 decades are useless and
fitting regime is restricted to the remaining 3 decades. Mo
over, m0 is not knowna priori. Second, the uncontrolle
theoretical approximation~4! is a key ingredient of the
method. Third, one has the feeling that the method does
really make optimal use of the available data: a reduction
the statistical uncertainty by means of a more sophistica
approach seems possible. Finally, as we will show bel
fitting the rupture force distribution by a Gaussian cause
systematic overestimation ofn0 by about 30%.

In the following we propose an optimized method of ru
ture data analysis, which is free of the above shortcomi

FIG. 1. ~a!–~e! Number of rupture events versus rupture forcef,
represented as histograms with 5 pN bins, for five different pull
ratesm. For eachm, a total ofNm5100 rupture events were ran
domly generated on a computer according to the probability den
~19!. In each plot, the solid line represents a Gaussian fit to
histogram, whose maximum is the indicated most probable rup
force f * 5 f * (m). ~f! Log-linear plot of the most probable ruptur
forces f * (m) versus pulling ratesm as obtained from~a!–~e!. The
linear best fit to these data points is indicated by the solid li
yielding for the fit parameters in Eq.~7! the estimatesñ0

'1.24 sec21 and ã'0.100 pN21.
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and is based on premises~1! and ~2! only. In addition, in
those exceptional cases where Eq.~2! is actually not satis-
fied, our method will allow us to recognize this fact.

Changing variables fromt to f according to Eq.~1!, ki-
netic equation~2! takes the form

d pm~ f !/d f52n~ f !pm~ f !/m, ~9!

where pm( f )ª*0
`dtp(t)d„t2( f /m)… is the probability of

bond survival up to a pulling forcef at an arbitrary but fixed
pulling speedm. With the initial conditionpm(0)51 it fol-
lows that

pm~ f !5exp$2g~ f !/m%, ~10!

where we have introduced

g~ f !ªE
0

f

d f8 n~ f 8!. ~11!

Our first observation is that onceg( f ) is known, n( f ) fol-
lows immediately. Thus, we can focus on the determinat
of g( f ) from now on. Second, given a set ofNm rupture
forces f n , n51, . . . ,Nm , at a fixed pulling ratem, the best
estimate forpm( f ) that can be inferred from these data in t
absence of any furthera priori knowledge is

p̃m~ f !5
1

Nm
(
n51

Nm

Q~ f n2 f !, ~12!

where Q(x) is the Heaviside step function@Q(x,0)
50, Q(x>0)51#. Furthermore, here and in the following
a tilde indicates an estimate for the corresponding ‘‘tru
quantity without tilde, towards which it converges~with
probability 1) for Nm→`. However, note that this conver
gence is not uniform. Rather, for any fixedm, the majority of
rupture eventsf n will sample a rather limitedf interval ~cf.
Fig. 1!. Only within this interval will an experimentally re
alistic finite number of pullingsNm admit via Eq. ~12! a
reliable estimate

g̃m~ f !ª2m ln p̃m~ f ! ~13!

for the ‘‘true’’ function g( f ) in Eq. ~10!.
We now come to the central point of our paper, name

the simple observation that, according to Eq.~10!, the func-
tion 2m ln„pm( f )…5g( f ) is in fact independent of the pull
ing speedm. By properly exploiting this universality, it
should clearly be possible to reliably estimateg( f ) over a
wide f range by combining data for several different pullin
speedsm. The technical details of how to do this in a wa
that makes optimal use of the information encapsulated
the available experimental data is the content of
following.

Consider an arbitrary but fixedf .0. Then, for each pull-
ing ratem an estimateg̃m( f ) for the trueg( f ) follows from
Eqs.~12! and~13!. Its reliability is quantified by the variance
s̃ g̃m( f )

2 , whose explicit determination will be given shortl

With this amount of information at our disposition, accordin
to the so-called method of weighted averages@9#, the best
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guess for the trueg( f ) is represented by that argumentx
which minimizes the weighted sum of square deviatio
(m@x2g̃m( f )#2/s̃ g̃m( f )

2 , where (m indicates a summation

over all pulling ratesm. In other words, this best guess fo
g( f ) is given by the weighted average

g̃~ f !5(
m

cm~ f !g̃m~ f !, ~14!

cm~ f !ª
1

s̃ g̃m( f )
2 Y (

m

1

s̃ g̃m( f )
2

. ~15!

In order to determine the variancess̃ g̃m( f )
2 , we consider the

numberNm( f )ªpm( f )Nm of bonds surviving up to the pull
ing forcef. It follows thatNm(0)5Nm and that for any fixed
f, m, and Nm , the numberNm( f ) is distributed binomially
according to

W„Nm~ f !…5
@pm~ f !#Nm( f )@12pm~ f !#Nm2Nm( f )Nm!

Nm~ f !! @Nm2Nm~ f !#!
,

implying for the associated variancesNm( f )
2 the result

sNm( f )
2 5Nmpm~ f !@12pm~ f !#. ~16!

An estimates̃Nm( f )
2 for the truesNm( f )

2 follows by replacing

the true but unknownpm( f ) in Eq. ~16! by the estimate
exp@2g̃(f)/m# @see Eq.~10!#. Then, by exploiting the erro
propagation laws̃ g̃m( f )

2 5@dg̃m( f )/dNm( f )#2 s̃Nm( f )
2 and Eq.

~13! one finds for the coefficientscm in Eq. ~15! the result

cm~ f !5
Nm p̃m

2 ~ f !eg̃( f )/m

m2 @12e2g̃( f )/m#
s g̃( f )

2 , ~17!

s g̃( f )
2

ªS (
m

Nmp̃m
2 ~ f !eg̃( f )/m

m2@12e2g̃( f )/m#
D 21

. ~18!

Finally, by taking into account Eq.~15! one readily verifies
that s g̃( f )

2 from Eq. ~18! indeed coincides with the varianc

(mcm
2 s̃ g̃m( f )

2 describing the statistical uncertainty ofg̃( f ) in

Eq. ~14!.
In practice, the above method boils down to the followi

two steps. First, the functionsp̃m( f ) and g̃m( f ) are deter-
mined from the experimentally observed rupture forcesf n ,
n51, . . . ,Nm , for different pulling speedsm according to
Eqs.~12! and ~13!. Second, the weighted averages~14! and
~17! are evaluated. Since the coefficientscm( f ) in Eq. ~14!
depend themselves on the unknown quantityg̃( f ) according
to Eq.~17!, we are dealing with a transcendental equation
g̃( f ) for any fixed f value. Among many other well-known
methods to solve such an equation, one particularly sim
way is to iteratively update the value ofg̃( f ) on the basis of
Eq. ~14! until stationarity is reached. The result is an estim
g̃( f ) for the true functiong( f ) in Eq. ~10! together with its
statistical uncertainty~18!. Once a specificf-dependence o
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the raten( f ), as, e.g., in Eq.~4!, is assumed, it is possible t
decide using Eq.~11! whether this assumption is compatib
with the measured data and to fit the parameters. In addit
one can check whether the functionsg̃m( f ) for different pull-
ing ratesm indeed collapse within their statistical uncertai
ties onto a single master curve. If this is not the case
follows that the basic kinetic law~2! is not satisfied for the
bond rupture mechanism at hand.

In order to test the above procedure and compare it w
the standard method, we generated the necessary input
by means of an idealized numerical computer simulation
an actual experiment. Exploiting Eqs.~4!, ~10!, ~11!, one
readily finds the explicit expression for the probability de
sity 2d pm( f )/d f that a rupture event occurs at a given for
f:

2
d pm~ f !

d f
5

n0

m
expH a f 2

n0

a m
~ea f21!J . ~19!

According to this probability density with the parametersa
andn0 given by Eq.~8!, we have sampled rupture forcesf n ,
n51, . . . ,Nm , for different pulling ratesm on the computer.
As compared to real, experimentally measured rupt
forces, these numerically generated data have the advan
of being completely clean and the underlying statistical pr
abilities are exactly known. Thus, our ‘‘numerical expe
ment’’ offers an ideal means for testing the efficiency of va
ous approaches to data analysis. In particular, the gene
uncontrolled theoretical approximation~4! is exactly satis-
fied by our test data, thus representing a considerable bia
favor of the standard method. The ultimate goal will then
to recover the preset, i.e., known, parametersn0 anda in Eq.
~4! from the numerically generated rupture data using
standard method and the proposed one.

With the parameter values of Eq.~8!, we have simulated
Nm5100 rupture events for each of five pulling ratesm
5100, 500, 1000, 5000, and 10 000 pN/sec. Moreover
arrange the data into histograms, as required by the stan
method, the force axis was divided into 5 pN bins. All the
numbers represent typical values in real experimental inv
tigations@3,5#.

The results obtained by the standard method are sum
rized in Fig. 1. In particular, the most probable rupture forc
in Fig. 1~f! indeed satisfy to a very good approximation t
linear dependence on lnm predicted by Eq.~7!. The resulting
estimates for the true parameter values in Eq.~8! are ñ0
'1.24 sec21 and ã'0.100 pN21.

The results obtained by our method are depicted in Fig
The functionsg̃m( f ) for different pulling ratesm indeed col-
lapse within their statistical uncertainties onto a single m
ter curve. Further, the estimateg̃( f ) for the true function
g( f ) is rather good over a wide range of pulling forcesf.
Finally, the resulting estimateñ0'0.95 sec21 is consider-
ably closer to the true parameter value in Eq.~8! than the one
resulting from the standard method, while the estimateã
'0.098 pN21 is slightly worse.

To gain further insight into the accuracy of both met
ods, we have repeated the above described numerica
periment 20 times. Taking averages over all 20 realizatio
3-3
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the standard method yieldedñ051.3060.05 sec21 and
ã50.10160.001 pN21. Our method yielded much mor
accurate estimatesñ050.9760.01 sec21, and for ã50.1
60.0003 pN21.

Our first observation is that the former estimate forn0
exceeds the true value by six standard deviations, indica
a systematic rather than a statistical error. We have foun
similar 30% systematic overestimation ofn0 also for several
other realistic choices of the parametersn0 , a, andNm . This

FIG. 2. The functiong̃m( f ) versus forcef obtained from the
same numerical simulation data as in Fig. 1 according to Eqs.~12!
and~13!. For the sake of clarity, only a small set of discretef values
are plotted with different symbols for the different pulling ratesm
~some data points are outside the depicted parameter range!. The
resulting estimate forg̃( f ) according to our method~14!, ~17! is
represented as filled circles. The true functiong( f ) from Eqs.~4!,
~8!, ~11! is indicated as a solid line. The error bars were determi
via Eq. ~18! and then enlarged by a factor 5 for the sake of be
visibility. Considering in the functiong( f ) from Eqs.~4! and ~11!
the values ofn0 anda not as fixed by Eq.~8! but rather as fitting
parameters, a best fit to the solid dots~on a logarithmic scale! yields
the estimatesñ0'0.95 sec21 and ã'0.098 pN21.
-J
A

.E
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systematic deviation is indeed universal, i.e., independen
the concrete values ofn0 and a, because these paramete
can always be set to unity by a proper choice of time a
force scales. In essence it is rooted in the following prope
for large m the probability density~18! is an asymmetric
function with negative skewness. Its fit by a symmet
Gaussian curve will always somewhat underestimatef * (m)
and, according to Eq.~7!, systematically overestimaten0.

Our second observation is that also the statistical un
tainties are significantly larger for the standard method
comparison with our method. This result verifies our abo
mentioned suspicion that the standard method does not re
make optimal use of the available data.

In conclusion, in our present work we have restricted o
selves to a careful description and comparison of our met
and the currently dominating standard method by using p
fectly ‘‘clean’’ data from a computer simulation of the sim
plest possible real system. Obvious next steps include
following. ~i! Comparing appropriate extensions of tho
methods with numerical simulation data for more comp
cated and realistic rate laws than in Eq.~4! as well as with
real experimental data.~ii ! In principle, the basic reaction
kinetics ~2! may be invalidated if the decay proceeds alo
different reaction pathways for different pulling speeds@10#,
due to contribution of recombination processes@11#, or be-
cause of the influence of an intermediate energy barrier@12#.
While our present method is able to recognize such a c
plication, its further quantitative analysis remains an op
question.
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