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Dynamic force spectroscopy: Optimized data analysis
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The forced rupture of single chemical bonds in biomolecular compo(ads ligand-receptor systeinas
observed in dynamic force spectroscopy experiments is addressed. An optimized method of data analysis is
proposed. This method significantly outperforms the current standard one when applied to data from an
idealized numerical computer simulation of an experiment with realistic parameter values. In particular, the
force-free dissociation rate can be inferred with a considerably smaller statistical uncertainty and without the
systematic overestimation of about 30%, which is shown to be inherent in the standard method.
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Dynamic force spectroscopy is a powerful and versatile v(f)=w(f)exp{—AU(f)/kgT}, 3
method to characterize bond strengths of a variety of biomo-
lecular compoundgl-5]. Using an atomic force microscope where the potential barrier against decay(f) is large
or some other experimental to@ee Table 1 of Ref6]), a  compared to the thermal energyT and the prefactow(f)
single chemical bonde.g., in a ligand-receptor compleis  represents the intramolecular attempt frequency.
exposed to a pulling force that increases linearly in time at a (iii) As long as the energy barrier separating the unbound
rate u, and bound states is sufficiently sharp and deep and/or the
applied force is sufficiently weak, one can approximately
f(t)=put, (1) linearizeAU(f) and neglect thé dependence ob(f), with
the result
until the bond breaks at a quite precisely measurable rupture
force. In doing so, the biomolecule is permanently in contact v(f)=roexpa f}, (4)
with a thermal heat batftusually a surrounding liqujdat a ) ) e
fixed temperaturd. Upon repeating the experiment with the Where vo:=»(0) is the force-free dissociation rate of the
same compound and the same pulling ratene observes chemical _bond ur_1der_ study. Its determlngt_lon_ls clearly of
rupture forces that are statistically distributed over a ratheforemostinterest in this context. The coefficienimeskgT
wide range. Furthermore, for different pulling ratesone ~ ¢an be identified as the s_pa'ual distance bgtwe_en potential
observes significantly different such statistical distributions Minimum and maximunfprojected along the direction of the
The theoretical challenge is to draw conclusions regardingulling force and is therefore a second quantity of consid-
the chemical bond under study from these experimental dat&rable interest. . o
Milestones in this respect are due to Bel] and to Evans The currently predominant method of estimatinganda
and Ritchie[2], forming the basis of the current standard from experimentally observed rupture forces is based on the
method of data analysis and consisting of the following three@Pove described theoretical insight in conjunction with the
main points. following line of reasoning. Taking into account E@s), (2),
(i) A rupture event is viewed as thermally activated decay@nd (4), one readily findg2] that the probability of rupture
of a metastable state across a potential barrier governed bya§ & function of the acting force=0 is monotonically de-

reaction kinetics of the form creasing if the pulling ratg is smaller than the critical value
p(t)=—»(F())P(V), @ Hor=rola. ©
In other words, the most probable rupture forige(n) is

wherep(t) is the probability of bond survival up to time
and »(f) is the rate of decay in the presence of a pulling
force f. The only assumption implicit in Eq2) is that in- f.(u)=0 for
tramolecular thermal relaxation processes are much faster
than the instantaneous lifetimev{f) of the bond and the On the other hand, for> u, the probability of rupture be-
time scale on which the applied ford¢t) notably changes. comes a nonmonotonic function of the acting fofagith a
For the experimentally feasible pulling ratgsin Eq. (1), unigue maximum at
ranging from 10! to 1 pN/sec[3], this condition, and
hence Eq(2) is very well satisfied in most cases. 1 [ap

(i) Under the very same conditions, reaction rate theory fa(m)= o n(,,_()) for  u>po. @
[8] predicts an Arrhenius law for(f) of the form

given by

M= pho- (6)

Hence,vy, and @ can be determined by conducting experi-
ments with several different pulling ratgs> uo. For each of
*Email address: mykhaylo@physik.uni-bielefeld.de them, the most probable rupture forég(w) can be esti-
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P PR T Bl parn TR /A SSRS o and is based_ on premisé¢$) and (2) pnly. In addition, i_n
8 5l £=214pN ] 0} =603pN : those exceptional cases where Eg). is actually not satis-
g st sk 1 fied, our method will allow us to recognize this fact.

Em_ ol ] Changing variables fronh to f according to Eq(1), ki-
g ) S I Yih\ netic equation(2) takes the form
z 1 _
% 10 20 30 40 50 60 70 0 102030 40 50 60 70 80 90 d p#(f)/df— v(f)pM(f)/,u, ©
2 Pl a-tpe [at 000 where p,,(f):=/gdtp(t) 6(t—(f/w)) is the probability of
220} A=ITTN i =675PN T bond survival up to a pulling forckat an arbitrary but fixed
gls- 15} ; pulling speedu. With the initial conditionp,(0)=1 it fol-
Elo_ 10k ] lows that
20 i j pu(H=expl—g()/u}, (10)
0 0 L1
250 1020 30 40 %0 10 mo 020 g where we have introduced
5. g(f)zzf df’ v(f"). (11
g 0
© 10}
E s Our first observation is that onagf) is known, v(f) fol-
“ " lows immediately. Thus, we can focus on the determination
%S0 20 B 3530 %0 70 “100 1000 " 10000 of g(f) from now on. Second, given a set bf, rupture
# e forcesf,, n=1,... N,, at a fixed pulling ratex, the best

FIG. 1. (8)—(e) Number of rupture events versus rupture fokce estimate fomp ,(f) that Can_be_ inferred from these data in the
represented as histograms with 5 pN bins, for five different pullingabsence of any furthex priori knowledge is
ratesu. For eachu, a total of N, =100 rupture events were ran-
. o . N
domly generated on a computer according to the probability density ~ 1 &
(19). In each plot, the solid line represents a Gaussian fit to the pﬂ(f)z N 21 O(f,—1), (12)

- . . A n=
histogram, whose maximum is the indicated most probable rupture K’

forcef, =1, (n). (f) Log_—linear plot of the_most probable rupture \yhere O(x) is the Heaviside step functiof® (x<0)
forcesf, (u) versus pulling rateg. as obtained fronfa)—(e). The — _q @(x=0)=1]. Furthermore, here and in the following,
linear best fit to these data points is indicated by the solid line, yj4e indicates an estimate for the corresponding “true’
ylelding for the fit parameters in Eq(7) the estimatesv, quantity without tilde towards which it convergegwith
~1.24 sec! and@~0.100 pN 2. - ;

probability 1) forN,—o. However, note that this conver-
gence is not uniform. Rather, for any fixgd the majority of
rupture events, will sample a rather limited interval (cf.
Fig. 1). Only within this interval will an experimentally re-
alistic finite number of pullingsN,, admit via Eq.(12) a
reliable estimate

mated, usually by fitting a Gaussian to the observed distribu
tion of rupture forces in the form of a histograef. Fig. 1).
Then, the resulting, («) values are plotted versus pa).
Finally, a linear best fit yields an estimate fay and . This
procedure is henceforth referred tostandard method
It has several obvious weak points. For instance, for typi- G (D =—pInP () (13)
cal values of the rupture parametésse Table 3 in Ref5]) . .
for the “true” function g(f) in Eqg. (10).
vo=1sec?! a=0.1pN? (8) We now come to the central point of our paper, namely,
the simple observation that, according to EL0), the func-

the critical pulling rate in Eq(5) is o= 10 pN/sec. Hence, tion —uIn(p,(f))=g(f) is in fact independent of the pull-
out of the experimentally feasible pulling ratgsbetween NG speedu. By properly exploiting this universality, it
10! and 16 pN/sec the first 2 decades are useless and thghould clearly be possible to reliably estimafef) over a
fitting regime is restricted to the remaining 3 decades. MoreWide f range by combining data for several different pulling
over, u, is not knowna priori. Second, the uncontrolled SPeedsu. The technical details of how to do this in a way
theoretical approximatior(4) is a key ingredient of the that mak_es optimal use of the mfor_matlon encapsulated in
method. Third, one has the feeling that the method does ndbe available experimental data is the content of the
really make optimal use of the available data: a reduction ofellowing. _ .
the statistical uncertainty by means of a more sophisticated Consider an arbitrary but fixet>0. Then, for each pull-
approach seems possible. Finally, as we will show belowind ratex an estimatd,,(f) for the trueg(f) follows from
fitting the rupture force distribution by a Gaussian causes &9S-(12) and(13). Its reliability is quantified by the variance
systematic overestimation of, by about 30%. ?ré#(f), whose explicit determination will be given shortly.
In the following we propose an optimized method of rup- With this amount of information at our disposition, according
ture data analysis, which is free of the above shortcomingso the so-called method of weighted averaf@k the best
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guess for the trugy(f) is represented by that argument the ratev(f), as, e.g., in Eq(4), is assumed, it is possible to
which minimizes the weighted sum of square deviationsdecide using Eqc1l) whether this assumption is compatible
3 (x5 (f)]zl”&g o, where S, indicates a summation with the measured data and to fit the parameters. In addition,
g " 9,(") K one can check whether the functidiig(f) for different pull-
ing ratesu indeed collapse within their statistical uncertain-
ties onto a single master curve. If this is not the case, it
follows that the basic kinetic law®) is not satisfied for the
@(f)=2 c,.(F)g,(f), (14 bond rupture mechanism at hand.
” In order to test the above procedure and compare it with
the standard method, we generated the necessary input data
1 2 1 (15) by means of an idealized numerical computer simulation of
m an actual experiment. Exploiting Eg&), (10), (11), one
readily finds the explicit expression for the probability den-
sity —d p,(f)/df that a rupture event occurs at a given force

over all pulling ratesu. In other words, this best guess for
g(f) is given by the weighted average

C,(f):=

~2 ~2 :
I5,,(M) 95,(f

In order to determine the variancé‘é (fy» We consider the
“m
numberN ,(f):=p,(f)N,, of bonds surviving up to the pull-

ing forcef. It follows thatN ,(0)=N,, and that for any fixed dp,(f) v o
f, u, andN,,, the numbem ,(f) is distributed binomially T —exp{ af— a—(e"‘f—l) : (19
according to K K
£)INL(Dp 1 — £YINLNLDN 1 According to this probability density with the parameters
W(N ()= P, (D1 » [| Pu(D]™ lﬂ Ly and v, given by Eq.(8), we have sampled rupture forcgs,
NL (N, =NL(H)]! n=1,...N,, for different pulling ratesu on the computer.

As compared to real, experimentally measured rupture
forces, these numerically generated data have the advantage
of being completely clean and the underlying statistical prob-
‘Tﬁﬂ(f):N#pM(f)[l_pﬂ(f)]' (16 apilities are exactly known. Thus, our “numerical experi-
) > ) _ ment” offers an ideal means for testing the efficiency of vari-
An estimategy () for the trueay (1) follows by replacing  ous approaches to data analysis. In particular, the generally
the true but unknowm,(f) in Eq. (16) by the estimate uncontrolled theoretical approximatidd) is exactly satis-
exd —9(f)/u] [see Eq.(10)]. Then, by exploiting the error fied by our test data, thus representing a considerable bias in
propagation Iaw’&éﬂ(f)z[d”gﬂ(f)/d NM(f)]Zﬁﬁﬂ(f) and Eq. favor of the standard method. The ultimate goal will then be
(13) one finds for the coefficients, in Eq. (15) the result [0 récover the preset, i.e., known, parameteyanda in Eq.
(4) from the numerically generated rupture data using the
N, P2 (f)ed/n standard method and the proposed one.

il 2 (17 With the parameter values of E(), we have simulated
N,=100 rupture events for each of five pulling ratgs
=100, 500, 1000, 5000, and 10000 pN/sec. Moreover, to

NP2 (f)edhin -t arrange the data into histograms, as required by the standard

— = (18)  method, the force axis was divided into 5 pN bins. All these
numbers represent typical values in real experimental inves-
tigations[3,5].

implying for the associated varianoeﬁ, () the result
®

(g

w(f)= 12[1—e 90 O%(f)

an=| 2

m Mz[l_ e*@(f)/ﬂ]

Finally, by taking into account Eq15) one readily verifies .

that aé(f) from Eq. (18) indeed coincides with the variance . Th? re;ults obtamgd by the standard method are summa-

s 24 rized in Fig. 1. In particular, the most probable rupture forces
y23

n O"SM(f) describing the statistical uncertainty 9€f) in iy Fig. 1(f) indeed satisfy to a very good approximation the
Eq. (14). linear dependence on jnpredicted by Eq(7). The resulting

In practice, the above method boils down to the followingestimates for the true parameter values in E). are 7,
two steps. First, the functiorig,(f) andg,(f) are deter- ~1.24 sec! anda~0.100 pN 1.
mined from the experimentally observed rupture forégs The results obtained by our method are depicted in Fig. 2.
n=1,...N,, for different pulling speedg. according to  The functionsj,(f) for different pulling ratesu indeed col-
Egs.(12) and(13). Second, the weighted averagdd) and lapse within their statistical uncertainties onto a single mas-
(17) are evaluated. Since the coefficientg(f) in Eq. (14)  ter curve. Further, the estimafff) for the true function
depend themselves on the unknown quardity) according g(f) is rather good over a wide range of pulling fordes
to Eq.(17), we are dealing with a transcendental equation forFinally, the resulting estimat®,~0.95 sec?! is consider-
9(f) for any fixedf value. Among many other well-known ably closer to the true parameter value in E).than the one
methods to solve such an equation, one particularly simpleesulting from the standard method, while the estiniate
way is to iteratively update the value 9(f) on the basis of ~0.098 pN! is slightly worse.
Eqg. (14) until stationarity is reached. The result is an estimate To gain further insight into the accuracy of both meth-
9(f) for the true functiong(f) in Eq. (10) together with its  ods, we have repeated the above described numerical ex-
statistical uncertainty18). Once a specifié-dependence of periment 20 times. Taking averages over all 20 realizations,
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systematic deviation is indeed universal, i.e., independent on
the concrete values of, and a, because these parameters

can always be set to unity by a proper choice of time and
force scales. In essence it is rooted in the following property:

10000 |

"‘gmo- ] for large u the probability density(18) is an asymmetric
Z . xgmﬂm function with negative skewness. lts fit by a symmetric
s o u=100pNkec | Gaussian curve will always somewhat underestinigigu)
100 o p=500pNisec and, according to Eq7), systematically overestimate.
oot Nl Our second observation is that also the statistical uncer-
¢ p=10000pN/sec | tainties are significantly larger for the standard method in

L, comparison with our method. This result verifies our above
0 10 20 30 40 S0 60 70 8 90 mentioned suspicion that the standard method does not really
SN make optimal use of the available data.

FIG. 2. The functiorig,(f) versus forcef obtained from the In conclusion, in our pregent work we h"f‘ve restricted our-
same numerical simulation data as in Fig. 1 according to B@s. ~ Selves to a careful description and comparison of our method
and(13). For the sake of clarity, only a small set of discretalues ~ @nd the currently dominating standard method by using per-
are plotted with different symbols for the different pulling rajes ~ fectly “clean” data from a computer simulation of the sim-
(some data points are outside the depicted parameter)rafige  Plest possible real system. Obvious next steps include the
resulting estimate fogj(f) according to our method14), (17) is  following. (i) Comparing appropriate extensions of those
represented as filled circles. The true functig(f) from Egs.(4), = methods with numerical simulation data for more compli-
(8), (12) is indicated as a solid line. The error bars were determineccated and realistic rate laws than in E4) as well as with
via Eq.(18) and then enlarged by a factor 5 for the sake of betterreal experimental datdii) In principle, the basic reaction
visibility. Considering in the functiory(f) from Egs.(4) and (11) kinetics (2) may be invalidated if the decay proceeds along
the values ofv, and @ not as fixed by Eq(8) but rather as fitting  different reaction pathways for different pulling speéig],
parameters, a best fit to the solid ds a logarithmic scaeyields due to contribution of recombination proces$&$], or be-
the estimate3/,~0.95 sec* and@~0.098 pN'*. cause of the influence of an intermediate energy bati2k
While our present method is able to recognize such a com-
plication, its further quantitative analysis remains an open
question.

the standard method yielde@,=1.30+0.05 sec! and
@=0.101-0.001 pN'1. Our method yielded much more
accurate estimate®,=0.97+0.01 sec?!, and for @=0.1
+0.0003 pN'%. Helpful discussions with R. Ros, F. Bartels, R. Eckel, D.

Our first observation is that the former estimate igr  Anselmetti, R. Eichhorn, and especially R. Merkel are grate-
exceeds the true value by six standard deviations, indicatinfully acknowledged. This work was supported by Deutsche
a systematic rather than a statistical error. We have found Borschungsgemeinschaft under Grant No. SFB 6TI&l-
similar 30% systematic overestimation &f also for several projekt K7), the Alexander von Humboldt-Stiftung, and the
other realistic choices of the parametegs «, andN,. This  ESF-program STOCHDYN.
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